AI客服無法準(zhǔn)確理解問題,難以轉(zhuǎn)接到人工客服等情形,均涉嫌侵犯消費(fèi)者的知情權(quán)和選擇權(quán)。一些商家不能為了節(jié)省成本,利用AI客服來敷衍應(yīng)付消費(fèi)者。當(dāng)前,AI客服的發(fā)展應(yīng)用是趨勢(shì)所在。但是,不管人工智能多么發(fā)達(dá),都不能忽視人**本真的情感、**真實(shí)的需求。 [3](新華網(wǎng) 評(píng))大家接到的*擾電話多為AI客服上陣,它們自說自話、不知疲倦,令人不堪其擾又無可奈何。商家營(yíng)銷無可厚非,“營(yíng)銷+AI”亦是一種趨勢(shì),問題在于濫用與無序。任其蔓延,不僅將對(duì)消費(fèi)者造成極大困擾,還會(huì)影響市場(chǎng)的良性運(yùn)轉(zhuǎn)。事實(shí)上,有人已自行琢磨應(yīng)對(duì)之計(jì),要么一聽是AI“秒掛斷”,要么設(shè)置語(yǔ)音助手,讓“魔法打敗魔法”。(北京日?qǐng)?bào) 評(píng))針對(duì)...
支持多渠道接入,可支持電話、短信、MSN、QQ、飛信、BBS等渠道無縫接入支持面向CRM的數(shù)據(jù)深度挖掘分析。是幫助CFO寬心、放心、欣慰、得意的好產(chǎn)品,是CMO提出市場(chǎng)運(yùn)營(yíng)策略的數(shù)據(jù)基石。性能指標(biāo)系統(tǒng)召回率達(dá)到:95%,準(zhǔn)確率達(dá)到:95%,產(chǎn)品穩(wěn)定性、兼容性、運(yùn)行效率、并發(fā)能力、危機(jī)處理能力等產(chǎn)品化要求已達(dá)到電信級(jí)實(shí)用水平,并已實(shí)際在廣東移動(dòng)通信公司全省上線運(yùn)營(yíng)20個(gè)月,在Lenovo運(yùn)行6個(gè)月。人機(jī)交互愛客服智能機(jī)器人5大引擎擺脫人機(jī)交互困境,提升客服體驗(yàn)。語(yǔ)義分析引擎、分詞標(biāo)注引擎可以實(shí)現(xiàn)一個(gè)問題應(yīng)付各種相似問法的效果;知識(shí)庫(kù)更新機(jī)制引入自動(dòng)爬取技術(shù),信息實(shí)時(shí)性提升。青浦區(qū)提供大模型智能客...
下表具體給出了該系統(tǒng)與其它傳統(tǒng)系統(tǒng)的重要區(qū)別。多層次語(yǔ)言分析從語(yǔ)義文法層、詞模層、關(guān)鍵詞層三個(gè)層面自動(dòng)理解客戶咨詢。通常*單層分析模糊推理針對(duì)客戶的模糊問題,采用模糊分析技術(shù),識(shí)別客戶的意圖,從而準(zhǔn)確地搜索客戶所需的知識(shí)內(nèi)容遇到模糊咨詢,性能驟然降低縮略語(yǔ)識(shí)別根據(jù)縮略語(yǔ)識(shí)別算法,自動(dòng)識(shí)別縮略語(yǔ)所對(duì)應(yīng)的正式稱呼,然后從知識(shí)庫(kù)中搜索到正確的知識(shí)內(nèi)容。沒有現(xiàn)成的方法支持細(xì)粒度知識(shí)管理,*對(duì)“文檔”式或“表單”式數(shù)據(jù)管理有效。針對(duì)客戶的模糊問題,采用模糊分析技術(shù),識(shí)別客戶的意圖,從而準(zhǔn)確地搜索客戶所需的知識(shí)內(nèi)容。嘉定區(qū)安裝大模型智能客服銷售廠該系統(tǒng)是一種點(diǎn)式或條式的知識(shí)管理系統(tǒng),因此是一種細(xì)粒度的管理...
該系統(tǒng)是一種點(diǎn)式或條式的知識(shí)管理系統(tǒng),因此是一種細(xì)粒度的管理工具。這中細(xì)粒度的知識(shí)管理工具,使得大型企業(yè)更有效,更能從知識(shí)的運(yùn)行中實(shí)時(shí)地掌握企業(yè)的運(yùn)行狀態(tài),從而更有效地進(jìn)行科學(xué)決策。例如,在客戶的統(tǒng)計(jì)信息、熱點(diǎn)業(yè)務(wù)統(tǒng)計(jì)分析、VIP統(tǒng)計(jì)信息等可以在極短的時(shí)間內(nèi)獲得。這是一般知識(shí)管理工具所不支持的。下表具體給出了該系統(tǒng)與其它主要知識(shí)管理工具的重要區(qū)別。具有通用化的知識(shí)管理建模方案,可以迅速地幫助大型企業(yè)對(duì)龐雜的知識(shí)內(nèi)容進(jìn)行面向客戶化的知識(shí)管理。沒有內(nèi)置的知識(shí)管理方案,需要企業(yè)從頭設(shè)計(jì)。支持多層次管理,從“地域—時(shí)間—客戶群—渠道—業(yè)務(wù)—主體—摘要—文法—詞類”等多個(gè)層次管理企業(yè)知識(shí)。靜安區(qū)辦公用大...
多模態(tài)大模型多模態(tài)大模型則能夠同時(shí)處理和理解多種類型的數(shù)據(jù),如文本、圖像和音頻,從而實(shí)現(xiàn)跨模態(tài)的信息融合與生成。這類模型在圖文生成、視頻生成等任務(wù)中表現(xiàn)突出,能夠打破單一模態(tài)的局限,實(shí)現(xiàn)更加豐富的交互與創(chuàng)作。OpenAI的CLIP模型就是一個(gè)典型的多模態(tài)大模型,通過聯(lián)合訓(xùn)練圖像和文本,成功實(shí)現(xiàn)了跨模態(tài)的信息對(duì)齊。多模態(tài)大模型的應(yīng)用涵蓋了內(nèi)容創(chuàng)作、智能搜索、輔助醫(yī)療等多個(gè)領(lǐng)域?;A(chǔ)科學(xué)大模型08:54AI讓生物學(xué)界變了天,98.5%人類蛋白質(zhì)結(jié)構(gòu)被預(yù)測(cè)出來,到底意味著什么?基礎(chǔ)科學(xué)大模型則主要應(yīng)用于生物、化學(xué)、物理和氣象等基礎(chǔ)科學(xué)領(lǐng)域,旨在通過學(xué)習(xí)大規(guī)模科學(xué)數(shù)據(jù),輔助科學(xué)研究和實(shí)驗(yàn)。這些模型能夠...
多角度可配置的統(tǒng)計(jì)分析智能監(jiān)控系統(tǒng)截圖我們?cè)O(shè)計(jì)的統(tǒng)計(jì)分析系統(tǒng)是一種統(tǒng)一的系統(tǒng),可以監(jiān)控不同的地區(qū)、渠道、品牌、業(yè)務(wù)、時(shí)間、話務(wù)員、客戶類型等9個(gè)基本維度,同時(shí)也可以將上述基本維度進(jìn)行復(fù)合,形成復(fù)合型監(jiān)控維度,極大地?cái)U(kuò)展了現(xiàn)有監(jiān)控技術(shù)。人工輔助在系統(tǒng)不能自動(dòng)回復(fù)用戶的問題時(shí),將轉(zhuǎn)人工處理。為此,我們研制并提供話務(wù)員操作系統(tǒng),供話務(wù)員操作使用。該系統(tǒng)具有精確的語(yǔ)義檢索能力,并且話務(wù)員可以在線編輯知識(shí)庫(kù),供其他話務(wù)員使用,或者經(jīng)過審核后,供智能客服系統(tǒng)自動(dòng)使用。知識(shí)面向客戶的知識(shí)管理,使得客戶可以直接有效訪問到客戶化知識(shí)庫(kù)。同時(shí)也面向企業(yè)內(nèi)部進(jìn)行知識(shí)管理。寶山區(qū)安裝大模型智能客服供應(yīng)客戶可按自己的意...
金融領(lǐng)域:中國(guó)移動(dòng)"移娃"系統(tǒng)月處理咨詢超6000萬次,通過風(fēng)險(xiǎn)偏好分析提供個(gè)性化產(chǎn)品推薦 [1-2]。電商場(chǎng)景:雙11期間實(shí)現(xiàn)3秒極速響應(yīng),日均分流80%基礎(chǔ)咨詢量。醫(yī)療行業(yè):在線咨詢系統(tǒng)記錄用戶行為數(shù)據(jù),建立健康檔案關(guān)聯(lián)機(jī)制。出版行業(yè):處理到貨查詢、缺貨賠償?shù)仁聞?wù),*在復(fù)雜場(chǎng)景轉(zhuǎn)接人工 [3]。智能語(yǔ)音導(dǎo)航系統(tǒng)壓縮IVR菜單層級(jí),自助服務(wù)成功率提升45% [1]虛擬客服助手(VCA)實(shí)時(shí)推薦應(yīng)答話術(shù),人工服務(wù)效率提升60% [1] [4]語(yǔ)音質(zhì)檢系統(tǒng)自動(dòng)識(shí)別服務(wù)缺陷,質(zhì)檢覆蓋率從15%提升至100% [1]沒有內(nèi)置的知識(shí)管理方案,需要企業(yè)從頭設(shè)計(jì)。徐匯區(qū)附近大模型智能客服服務(wù)熱線下表具體給...
多模態(tài)大模型多模態(tài)大模型則能夠同時(shí)處理和理解多種類型的數(shù)據(jù),如文本、圖像和音頻,從而實(shí)現(xiàn)跨模態(tài)的信息融合與生成。這類模型在圖文生成、視頻生成等任務(wù)中表現(xiàn)突出,能夠打破單一模態(tài)的局限,實(shí)現(xiàn)更加豐富的交互與創(chuàng)作。OpenAI的CLIP模型就是一個(gè)典型的多模態(tài)大模型,通過聯(lián)合訓(xùn)練圖像和文本,成功實(shí)現(xiàn)了跨模態(tài)的信息對(duì)齊。多模態(tài)大模型的應(yīng)用涵蓋了內(nèi)容創(chuàng)作、智能搜索、輔助醫(yī)療等多個(gè)領(lǐng)域?;A(chǔ)科學(xué)大模型08:54AI讓生物學(xué)界變了天,98.5%人類蛋白質(zhì)結(jié)構(gòu)被預(yù)測(cè)出來,到底意味著什么?基礎(chǔ)科學(xué)大模型則主要應(yīng)用于生物、化學(xué)、物理和氣象等基礎(chǔ)科學(xué)領(lǐng)域,旨在通過學(xué)習(xí)大規(guī)模科學(xué)數(shù)據(jù),輔助科學(xué)研究和實(shí)驗(yàn)。這些模型能夠...
查快遞遇上AI客服2025年3月13日,新聞報(bào)道稱,近日,濟(jì)南市民張先生原本滿心期待著年前在網(wǎng)上購(gòu)買的年貨,然而,時(shí)間一天天過去,快遞的蹤跡卻如同石沉大海,杳無音信。起初,張先生以為只是物流信息延遲,便耐心等待。但日子一天天過去,快遞依然沒有動(dòng)靜。他決定撥打快遞公司的客服熱線。當(dāng)張先生電話接通后,傳來的卻是一個(gè)機(jī)械而冷靜的聲音:請(qǐng)輸入您的單號(hào)。張先生按照提示操作,隨后AI客服稱:請(qǐng)簡(jiǎn)單描述您的問題??蔁o論張先生如何詳細(xì)地描述自己的問題,對(duì)方始終無法給出滿意的答復(fù)。從語(yǔ)義文法層、詞模層、關(guān)鍵詞層三個(gè)層面自動(dòng)理解客戶咨詢。松江區(qū)安裝大模型智能客服廠家供應(yīng)錯(cuò)別字識(shí)別對(duì)客戶咨詢中的錯(cuò)誤字進(jìn)行自動(dòng)糾正不...
2025年4月,張洪忠表示研究顯示,目前國(guó)內(nèi)主流媒體已經(jīng)將大模型技術(shù)應(yīng)用在內(nèi)容生產(chǎn)的全鏈條之中,技術(shù)的采納程度比較高。在使用水平和工作績(jī)效上,縣級(jí)媒體、市州級(jí)媒體、省級(jí)媒體、**級(jí)媒體呈現(xiàn)逐級(jí)遞增的特點(diǎn)??傮w上,媒體從業(yè)者對(duì)大模型技術(shù)抱持積極的態(tài)度,技術(shù)的接受程度比較高,年齡、學(xué)歷等都成為影響AI大模型使用的***因素 [17]大參數(shù)量人工智能大模型的一個(gè)***特點(diǎn)就是其龐大的參數(shù)量。參數(shù)量是指模型中所有可訓(xùn)練參數(shù)的總和,通常決定了模型的容量和學(xué)習(xí)能力。隨著大模型參數(shù)量的增加,它能夠捕捉更多的特征和更復(fù)雜的模式,因此在處理復(fù)雜數(shù)據(jù)和學(xué)習(xí)高維度的關(guān)系時(shí)具有更高的表現(xiàn)力。例如,OpenAI的GPT...
隱私使用爭(zhēng)議:○ 隱私侵犯:個(gè)人信息收集與使用可能違背知情同意原則(段偉文,2024);○ 匿名推理風(fēng)險(xiǎn):即使數(shù)據(jù)匿名化,模型仍可能通過關(guān)聯(lián)分析還原個(gè)體身份(蘇瑞淇,2024);○ 法律爭(zhēng)議:數(shù)據(jù)使用邊界模糊,易引發(fā)監(jiān)管合規(guī)糾紛(羅世杰,2024)。4. 行業(yè)資源分配挑戰(zhàn)成本投入差異加劇“兩極分化”:大型金融機(jī)構(gòu)憑借技術(shù)、數(shù)據(jù)與人才優(yōu)勢(shì)占據(jù)主導(dǎo)地位,而中小機(jī)構(gòu)因資金與規(guī)模限制陷入“強(qiáng)者愈強(qiáng),弱者愈弱”的困境。大型機(jī)構(gòu)通過擴(kuò)大模型規(guī)模鞏固競(jìng)爭(zhēng)力,導(dǎo)致行業(yè)資源加速集中(蘇瑞淇,2024);中小機(jī)構(gòu)則需權(quán)衡投入產(chǎn)出比,若無法規(guī)模化應(yīng)用,AI投入可能難以為繼(羅世杰,2024)。 [18]支持多層次管...
隨后,記者又撥打了一家外賣行業(yè)的客服熱線,該平臺(tái)的AI客服首先會(huì)詢問用戶信息以確認(rèn)身份,隨后進(jìn)一步詢問訂單號(hào)及用戶想要反映的問題。當(dāng)記者再次試圖直接跳過提問要求轉(zhuǎn)人工時(shí),AI客服同樣堅(jiān)持提供幫助,并給出多個(gè)處理選項(xiàng),**終記者被引導(dǎo)至微信或APP在線客服。02:5900:00/02:59AI客服“已讀亂回” 人工客服“人間蒸發(fā)”事實(shí)上,在轉(zhuǎn)接人工的過程中,大量且繁瑣的問題不僅延長(zhǎng)了用戶的等待時(shí)間,還引發(fā)用戶的煩躁情緒?!坝行〢I客服真的是給人找堵,多次表示轉(zhuǎn)人工后才艱難轉(zhuǎn)至人工?!本W(wǎng)友Jing在社交平臺(tái)上說。她的言論得到了不少網(wǎng)友的共鳴,有網(wǎng)友表示自己也曾有過類似經(jīng)歷,被AI客服逼得幾乎崩潰。...
視覺大模型視覺大模型則主要應(yīng)用于計(jì)算機(jī)視覺領(lǐng)域,負(fù)責(zé)處理和分析圖像或視頻數(shù)據(jù)。通過對(duì)大量視覺數(shù)據(jù)的訓(xùn)練,視覺大模型能夠完成圖像分類、目標(biāo)檢測(cè)、圖像生成等任務(wù)。隨著Transformer架構(gòu)的引入,模型如Vision Transformer(ViT)取得了***的成果。早期的視覺模型多基于卷積神經(jīng)網(wǎng)絡(luò)(CNN),如ResNet等,但隨著技術(shù)的進(jìn)步,基于自注意力機(jī)制的視覺(大)模型逐漸成為主流。視覺大模型被廣泛應(yīng)用于自動(dòng)駕駛、安防監(jiān)控、人臉識(shí)別、醫(yī)療影像分析等領(lǐng)域。金融領(lǐng)域:中國(guó)移動(dòng)"移娃"系統(tǒng)月處理咨詢超6000萬次,通過風(fēng)險(xiǎn)偏好分析提供個(gè)性化產(chǎn)品推薦 [1-2]。楊浦區(qū)提供大模型智能客服銷售廠...
金融領(lǐng)域:中國(guó)移動(dòng)"移娃"系統(tǒng)月處理咨詢超6000萬次,通過風(fēng)險(xiǎn)偏好分析提供個(gè)性化產(chǎn)品推薦 [1-2]。電商場(chǎng)景:雙11期間實(shí)現(xiàn)3秒極速響應(yīng),日均分流80%基礎(chǔ)咨詢量。醫(yī)療行業(yè):在線咨詢系統(tǒng)記錄用戶行為數(shù)據(jù),建立健康檔案關(guān)聯(lián)機(jī)制。出版行業(yè):處理到貨查詢、缺貨賠償?shù)仁聞?wù),*在復(fù)雜場(chǎng)景轉(zhuǎn)接人工 [3]。智能語(yǔ)音導(dǎo)航系統(tǒng)壓縮IVR菜單層級(jí),自助服務(wù)成功率提升45% [1]虛擬客服助手(VCA)實(shí)時(shí)推薦應(yīng)答話術(shù),人工服務(wù)效率提升60% [1] [4]語(yǔ)音質(zhì)檢系統(tǒng)自動(dòng)識(shí)別服務(wù)缺陷,質(zhì)檢覆蓋率從15%提升至100% [1]截至2025年,智齒AIAgent系統(tǒng)實(shí)現(xiàn)多渠道知識(shí)庫(kù)整合,維護(hù)成本降低70%。青浦...
人類對(duì)齊:為確保模型輸出符合人類期望和價(jià)值觀,通常采用基于人類反饋的強(qiáng)化學(xué)習(xí)(RLHF)方法。這一方法首先通過標(biāo)注人員對(duì)模型輸出進(jìn)行偏好排序訓(xùn)練獎(jiǎng)勵(lì)模型,然后利用強(qiáng)化學(xué)習(xí)優(yōu)化模型輸出。雖然RLHF的計(jì)算需求高于指令微調(diào),但總體上仍遠(yuǎn)低于預(yù)訓(xùn)練階段。信息檢索傳統(tǒng)搜索引擎正面臨來自人工智能信息助手(如 ChatGPT)這種新型信息獲取方式的挑戰(zhàn):基于大語(yǔ)言模型的信息系統(tǒng)可以通過自然語(yǔ)言對(duì)話實(shí)現(xiàn)復(fù)雜問題的交互式解答。例如,微軟推出的增強(qiáng)型搜索引擎New Bing將大語(yǔ)言模型與傳統(tǒng)搜索技術(shù)融合,既保留了搜索引擎對(duì)實(shí)時(shí)數(shù)據(jù)的抓取能力,又?jǐn)U展了語(yǔ)義理解與答案整合功能。然而,大語(yǔ)言模型仍存在信息精確性不足、...
人工智能大模型通常是指由人工神經(jīng)網(wǎng)絡(luò)構(gòu)建的一類具有大量參數(shù)的人工智能模型。大模型通常通過自監(jiān)督學(xué)習(xí)或半監(jiān)督學(xué)習(xí)在大量數(shù)據(jù)上進(jìn)行訓(xùn)練。**初,大模型主要指大語(yǔ)言模型(Large Language Models, LLM)。隨著技術(shù)的發(fā)展,逐漸擴(kuò)展出了視覺大模型、多模態(tài)大模型以及基礎(chǔ)科學(xué)大模型等概念。大模型是一個(gè)新興概念,截止目前并沒有*****的定義。因此,大模型所需要具有的**小參數(shù)規(guī)模也沒有一個(gè)嚴(yán)格的標(biāo)準(zhǔn)。目前,大模型通常是指參數(shù)規(guī)模達(dá)到百億、千億甚至萬億的模型。此外,人們也習(xí)慣性的將經(jīng)過大規(guī)模數(shù)據(jù)預(yù)訓(xùn)練(***多于傳統(tǒng)預(yù)訓(xùn)練模型所需要的訓(xùn)練數(shù)據(jù))的數(shù)十億參數(shù)級(jí)別的模型也可以稱之為大模型,如...
AI客服無法準(zhǔn)確理解問題,難以轉(zhuǎn)接到人工客服等情形,均涉嫌侵犯消費(fèi)者的知情權(quán)和選擇權(quán)。一些商家不能為了節(jié)省成本,利用AI客服來敷衍應(yīng)付消費(fèi)者。當(dāng)前,AI客服的發(fā)展應(yīng)用是趨勢(shì)所在。但是,不管人工智能多么發(fā)達(dá),都不能忽視人**本真的情感、**真實(shí)的需求。 [3](新華網(wǎng) 評(píng))大家接到的*擾電話多為AI客服上陣,它們自說自話、不知疲倦,令人不堪其擾又無可奈何。商家營(yíng)銷無可厚非,“營(yíng)銷+AI”亦是一種趨勢(shì),問題在于濫用與無序。任其蔓延,不僅將對(duì)消費(fèi)者造成極大困擾,還會(huì)影響市場(chǎng)的良性運(yùn)轉(zhuǎn)。事實(shí)上,有人已自行琢磨應(yīng)對(duì)之計(jì),要么一聽是AI“秒掛斷”,要么設(shè)置語(yǔ)音助手,讓“魔法打敗魔法”。(北京日?qǐng)?bào) 評(píng))由于...
AI客服無法準(zhǔn)確理解問題,難以轉(zhuǎn)接到人工客服等情形,均涉嫌侵犯消費(fèi)者的知情權(quán)和選擇權(quán)。一些商家不能為了節(jié)省成本,利用AI客服來敷衍應(yīng)付消費(fèi)者。當(dāng)前,AI客服的發(fā)展應(yīng)用是趨勢(shì)所在。但是,不管人工智能多么發(fā)達(dá),都不能忽視人**本真的情感、**真實(shí)的需求。 [3](新華網(wǎng) 評(píng))大家接到的*擾電話多為AI客服上陣,它們自說自話、不知疲倦,令人不堪其擾又無可奈何。商家營(yíng)銷無可厚非,“營(yíng)銷+AI”亦是一種趨勢(shì),問題在于濫用與無序。任其蔓延,不僅將對(duì)消費(fèi)者造成極大困擾,還會(huì)影響市場(chǎng)的良性運(yùn)轉(zhuǎn)。事實(shí)上,有人已自行琢磨應(yīng)對(duì)之計(jì),要么一聽是AI“秒掛斷”,要么設(shè)置語(yǔ)音助手,讓“魔法打敗魔法”。(北京日?qǐng)?bào) 評(píng))該系...
答案推薦引擎讓智能機(jī)器人能夠精細(xì)匹配答案;智能過濾引擎賦予機(jī)器人智能篩選答案的能力,屏蔽無效答案,將***的信息傳遞給用戶;智能反問引擎使機(jī)器人具備了多輪對(duì)話能力,持續(xù)地與用戶保持互動(dòng);場(chǎng)景識(shí)別引擎,通過上下文語(yǔ)境判斷,讓人機(jī)交互更加自然;系統(tǒng)的關(guān)鍵技術(shù)涉及三個(gè)主要方面:基于自然語(yǔ)言理解的語(yǔ)義檢索技術(shù)、多渠道知識(shí)服務(wù)技術(shù)、大規(guī)模知識(shí)庫(kù)建構(gòu)技術(shù)。在自然語(yǔ)言理解語(yǔ)義檢索技術(shù)方面,我們讓公眾以**自然的方式表達(dá)自己的信息或知識(shí)需求,并能夠獲得其**想要的精細(xì)信息。我們的系統(tǒng)首先對(duì)用戶的查詢進(jìn)行自然語(yǔ)言分析,這種分析在三個(gè)層次上進(jìn)行:語(yǔ)義文法分析、代詞類的短語(yǔ)文法分析、特征詞檢索。同時(shí),對(duì)上述用戶的自...
2025年1月,DeepSeek發(fā)布671億參數(shù)的開源模型DeepSeek R1 [5]。DeepSeek R1的性能與OpenAI 的GPT-o1相當(dāng),但成本遠(yuǎn)遠(yuǎn)低于閉源的o1模型,震撼了全球科技界。自2020年以來,大模型同時(shí)開始拓展至其他模態(tài)。2020年,谷歌公司提出Vision Transformer(ViT) [6]模型,將Transformer架構(gòu)引入視覺領(lǐng)域。2021年,OpenAI于發(fā)布了CLIP模型 [7],將圖像和文本進(jìn)行聯(lián)合訓(xùn)練,實(shí)現(xiàn)了大模型中跨模態(tài)的信息對(duì)齊。2024年,OpenAI發(fā)布Sora,支持直接從文字提示詞生成視頻,引起社會(huì)***關(guān)注。能同時(shí)接入短信、飛信、B...
智能客服是依托自然語(yǔ)言處理(NLP)、深度學(xué)習(xí)與大規(guī)模知識(shí)處理技術(shù)構(gòu)建的自動(dòng)化服務(wù)系統(tǒng),具備24小時(shí)響應(yīng)能力和多任務(wù)并發(fā)處理能力 [1]。其**技術(shù)包括語(yǔ)義解析引擎、動(dòng)態(tài)知識(shí)庫(kù)管理和多模態(tài)交互設(shè)計(jì),在電商、金融、醫(yī)療等領(lǐng)域?qū)崿F(xiàn)自助應(yīng)答、智能導(dǎo)航與人機(jī)協(xié)作功能 [3]。通過自動(dòng)化分流機(jī)制降低企業(yè)30%以上人力成本,并通過用戶咨詢數(shù)據(jù)分析提供業(yè)務(wù)決策支持。2022年中國(guó)智能客服市場(chǎng)規(guī)模達(dá)66.8億元,預(yù)計(jì)2027年將突破180億元。基于深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)架構(gòu),通過語(yǔ)音識(shí)別與自然語(yǔ)言處理技術(shù)實(shí)現(xiàn)意圖識(shí)別,準(zhǔn)確率達(dá)89.6% [1-2]。動(dòng)態(tài)知識(shí)庫(kù)系統(tǒng)整合多源業(yè)務(wù)數(shù)據(jù),結(jié)合預(yù)處理糾錯(cuò)機(jī)制構(gòu)建語(yǔ)義關(guān)聯(lián)圖譜...
AI客服無法準(zhǔn)確理解問題,難以轉(zhuǎn)接到人工客服等情形,均涉嫌侵犯消費(fèi)者的知情權(quán)和選擇權(quán)。一些商家不能為了節(jié)省成本,利用AI客服來敷衍應(yīng)付消費(fèi)者。當(dāng)前,AI客服的發(fā)展應(yīng)用是趨勢(shì)所在。但是,不管人工智能多么發(fā)達(dá),都不能忽視人**本真的情感、**真實(shí)的需求。 [3](新華網(wǎng) 評(píng))大家接到的*擾電話多為AI客服上陣,它們自說自話、不知疲倦,令人不堪其擾又無可奈何。商家營(yíng)銷無可厚非,“營(yíng)銷+AI”亦是一種趨勢(shì),問題在于濫用與無序。任其蔓延,不僅將對(duì)消費(fèi)者造成極大困擾,還會(huì)影響市場(chǎng)的良性運(yùn)轉(zhuǎn)。事實(shí)上,有人已自行琢磨應(yīng)對(duì)之計(jì),要么一聽是AI“秒掛斷”,要么設(shè)置語(yǔ)音助手,讓“魔法打敗魔法”。(北京日?qǐng)?bào) 評(píng))具有...
倫理對(duì)齊風(fēng)險(xiǎn):LLM的過度保守傾向可能扭曲投資決策,需通過倫理約束優(yōu)化模型對(duì)齊(歐陽(yáng)樹淼等,2025)。3. 安全與合規(guī)挑戰(zhàn)01:34如何看待人工智能面臨的安全問題數(shù)據(jù)安全漏洞:LLM高度依賴敏感數(shù)據(jù),面臨多重安全風(fēng)險(xiǎn):○ 技術(shù)漏洞:定制化訓(xùn)練過程中,數(shù)據(jù)上傳與傳輸易受攻擊,導(dǎo)致泄露或投毒(蘇瑞淇,2024);○ 系統(tǒng)性風(fēng)險(xiǎn):***可能利用模型漏洞竊取原始數(shù)據(jù)或推斷隱私信息(羅世杰,2024);○ 合規(guī)隱患:金融機(jī)構(gòu)若未妥善管理語(yǔ)料庫(kù),可能無意中泄露**(段偉文,2024)沒有內(nèi)置的知識(shí)管理方案,需要企業(yè)從頭設(shè)計(jì)。虹口區(qū)評(píng)價(jià)大模型智能客服服務(wù)熱線知識(shí)面向客戶的知識(shí)管理,使得客戶可以直接有效訪問...
大規(guī)模預(yù)訓(xùn)練在這一階段,模型通過海量的未標(biāo)注文本數(shù)據(jù)學(xué)習(xí)語(yǔ)言結(jié)構(gòu)和語(yǔ)義關(guān)系,從而為后續(xù)的任務(wù)提供堅(jiān)實(shí)的基礎(chǔ)。為了保證模型的質(zhì)量,必須準(zhǔn)備大規(guī)模、高質(zhì)量且多源化的文本數(shù)據(jù),并經(jīng)過嚴(yán)格清洗,去除可能有害的內(nèi)容,再進(jìn)行詞元化處理和批次切分。實(shí)際訓(xùn)練過程中,對(duì)計(jì)算資源的要求極高,往往需要數(shù)周甚至數(shù)月的協(xié)同計(jì)算支持。此外,預(yù)訓(xùn)練過程中還涉及數(shù)據(jù)配比、學(xué)習(xí)率調(diào)整和異常行為監(jiān)控等諸多細(xì)節(jié),缺乏公開經(jīng)驗(yàn),因此**研發(fā)人員的豐富經(jīng)驗(yàn)至關(guān)重要。2022年中國(guó)智能客服市場(chǎng)規(guī)模達(dá)66.8億元,預(yù)計(jì)2027年將突破180億元。青浦區(qū)國(guó)內(nèi)大模型智能客服銷售電話隱私使用爭(zhēng)議:○ 隱私侵犯:個(gè)人信息收集與使用可能違背知情同意...
隱私使用爭(zhēng)議:○ 隱私侵犯:個(gè)人信息收集與使用可能違背知情同意原則(段偉文,2024);○ 匿名推理風(fēng)險(xiǎn):即使數(shù)據(jù)匿名化,模型仍可能通過關(guān)聯(lián)分析還原個(gè)體身份(蘇瑞淇,2024);○ 法律爭(zhēng)議:數(shù)據(jù)使用邊界模糊,易引發(fā)監(jiān)管合規(guī)糾紛(羅世杰,2024)。4. 行業(yè)資源分配挑戰(zhàn)成本投入差異加劇“兩極分化”:大型金融機(jī)構(gòu)憑借技術(shù)、數(shù)據(jù)與人才優(yōu)勢(shì)占據(jù)主導(dǎo)地位,而中小機(jī)構(gòu)因資金與規(guī)模限制陷入“強(qiáng)者愈強(qiáng),弱者愈弱”的困境。大型機(jī)構(gòu)通過擴(kuò)大模型規(guī)模鞏固競(jìng)爭(zhēng)力,導(dǎo)致行業(yè)資源加速集中(蘇瑞淇,2024);中小機(jī)構(gòu)則需權(quán)衡投入產(chǎn)出比,若無法規(guī)?;瘧?yīng)用,AI投入可能難以為繼(羅世杰,2024)。 [18]而該套方案是...
隱私使用爭(zhēng)議:○ 隱私侵犯:個(gè)人信息收集與使用可能違背知情同意原則(段偉文,2024);○ 匿名推理風(fēng)險(xiǎn):即使數(shù)據(jù)匿名化,模型仍可能通過關(guān)聯(lián)分析還原個(gè)體身份(蘇瑞淇,2024);○ 法律爭(zhēng)議:數(shù)據(jù)使用邊界模糊,易引發(fā)監(jiān)管合規(guī)糾紛(羅世杰,2024)。4. 行業(yè)資源分配挑戰(zhàn)成本投入差異加劇“兩極分化”:大型金融機(jī)構(gòu)憑借技術(shù)、數(shù)據(jù)與人才優(yōu)勢(shì)占據(jù)主導(dǎo)地位,而中小機(jī)構(gòu)因資金與規(guī)模限制陷入“強(qiáng)者愈強(qiáng),弱者愈弱”的困境。大型機(jī)構(gòu)通過擴(kuò)大模型規(guī)模鞏固競(jìng)爭(zhēng)力,導(dǎo)致行業(yè)資源加速集中(蘇瑞淇,2024);中小機(jī)構(gòu)則需權(quán)衡投入產(chǎn)出比,若無法規(guī)?;瘧?yīng)用,AI投入可能難以為繼(羅世杰,2024)。 [18]動(dòng)態(tài)知識(shí)庫(kù)系...
知識(shí)面向客戶的知識(shí)管理,使得客戶可以直接有效訪問到客戶化知識(shí)庫(kù)。同時(shí)也面向企業(yè)內(nèi)部進(jìn)行知識(shí)管理。主要是面向企業(yè)內(nèi)部進(jìn)行知識(shí)管理,缺乏客戶化管理的有效支撐。支持“點(diǎn)式”或“條式”的知識(shí)管理,是一種細(xì)粒度的管理;使得大型企業(yè)更有效,更能從知識(shí)的運(yùn)行中實(shí)時(shí)地掌握企業(yè)的運(yùn)行狀態(tài),從而更有效地進(jìn)行科學(xué)決策。沒有現(xiàn)成的方法支持細(xì)粒度知識(shí)管理,*對(duì)“文檔”式或“表單”式數(shù)據(jù)管理有效。支持多層次管理,從“地域—時(shí)間—客戶群—渠道—業(yè)務(wù)—主體—摘要—文法—詞類”等多個(gè)層次管理企業(yè)知識(shí)。不支持多層次知識(shí)管理。知識(shí)管理系統(tǒng)是基于我們十余年面向客戶服務(wù)的大型知識(shí)庫(kù)建立方法的經(jīng)驗(yàn)而形成的精細(xì)化結(jié)構(gòu)知識(shí)管理工具。奉賢區(qū)附...
金融領(lǐng)域:中國(guó)移動(dòng)"移娃"系統(tǒng)月處理咨詢超6000萬次,通過風(fēng)險(xiǎn)偏好分析提供個(gè)性化產(chǎn)品推薦 [1-2]。電商場(chǎng)景:雙11期間實(shí)現(xiàn)3秒極速響應(yīng),日均分流80%基礎(chǔ)咨詢量。醫(yī)療行業(yè):在線咨詢系統(tǒng)記錄用戶行為數(shù)據(jù),建立健康檔案關(guān)聯(lián)機(jī)制。出版行業(yè):處理到貨查詢、缺貨賠償?shù)仁聞?wù),*在復(fù)雜場(chǎng)景轉(zhuǎn)接人工 [3]。智能語(yǔ)音導(dǎo)航系統(tǒng)壓縮IVR菜單層級(jí),自助服務(wù)成功率提升45% [1]虛擬客服助手(VCA)實(shí)時(shí)推薦應(yīng)答話術(shù),人工服務(wù)效率提升60% [1] [4]語(yǔ)音質(zhì)檢系統(tǒng)自動(dòng)識(shí)別服務(wù)缺陷,質(zhì)檢覆蓋率從15%提升至100% [1]電商場(chǎng)景:雙11期間實(shí)現(xiàn)3秒極速響應(yīng),日均分流80%基礎(chǔ)咨詢量。浦東新區(qū)安裝大模型智...
大模型起源于語(yǔ)言模型。上世紀(jì)末,IBM的對(duì)齊模型 [1]開創(chuàng)了統(tǒng)計(jì)語(yǔ)言建模的先河。2001年,在3億個(gè)詞語(yǔ)上訓(xùn)練的基于平滑的n-gram模型達(dá)到了當(dāng)時(shí)的先進(jìn)水平 [2]。此后,隨著互聯(lián)網(wǎng)的普及,研究人員開始構(gòu)建大規(guī)模的網(wǎng)絡(luò)語(yǔ)料庫(kù),用于訓(xùn)練統(tǒng)計(jì)語(yǔ)言模型。到了2009年,統(tǒng)計(jì)語(yǔ)言模型已經(jīng)作為主要方法被應(yīng)用在大多數(shù)自然語(yǔ)言處理任務(wù)中 [3]。2012年左右,神經(jīng)網(wǎng)絡(luò)開始被應(yīng)用于語(yǔ)言建模。2016年,谷歌(Google)將其翻譯服務(wù)轉(zhuǎn)換為神經(jīng)機(jī)器翻譯,其模型為深度LSTM網(wǎng)絡(luò)。2017年,谷歌在NeurIPS會(huì)議上提出了Transformer模型架構(gòu) [4],這是現(xiàn)代人工智能大模型的基石。沒有現(xiàn)成的方...
錄音編輯與查詢:可采用多種方式對(duì)錄音文件查詢,并可根據(jù)通話內(nèi)容及聯(lián)系人等重要信息對(duì)錄音文件進(jìn)行編輯。 網(wǎng)絡(luò)查聽:LinkTel-VR錄音系統(tǒng)引入了先進(jìn)的網(wǎng)絡(luò)技術(shù),使用戶可通過電腦網(wǎng)絡(luò)遠(yuǎn)程查聽。 自動(dòng)備份:可設(shè)置自動(dòng)備份的時(shí)間、備份介質(zhì)(如:硬盤、CD-R、MO等數(shù)據(jù)存儲(chǔ)設(shè)備)。 系統(tǒng)管理:可設(shè)定不同等級(jí)的密碼保護(hù),除了系統(tǒng)管理員使用***的密碼外,還有用戶密碼、錄音文檔查詢密碼等多種保護(hù)措施。 錄音文件的兩級(jí)保護(hù):除了按用戶要求進(jìn)行備份外,LinkTel-VR錄音系統(tǒng)還增加了錄音文件整理程序,整理程序可以恢復(fù)由于用戶誤操作而刪除的重要信息。 多種壓縮方式:PCM(35hr/G)、ADPCM(7...