倍聯(lián)德積極參與邊緣計算安全標準化工作,作為重要成員參與編制《工業(yè)邊緣計算安全技術(shù)要求》等3項國家標準。公司聯(lián)合中國信通院、華為等機構(gòu)發(fā)起“邊緣計算安全聯(lián)盟”,推動設備認證、漏洞共享、應急響應等機制落地。截至2025年6月,聯(lián)盟已吸納120余家企業(yè),完成2000余款邊緣設備的安全評估。在智能電網(wǎng)領(lǐng)域,倍聯(lián)德與國家電網(wǎng)合作構(gòu)建“云-邊-端”協(xié)同防護體系,通過邊緣節(jié)點部署輕量化入侵檢測系統(tǒng),將安全事件響應時間從分鐘級縮短至秒級。在智能制造場景中,公司為富士康打造的“安全即服務”平臺,集成威脅情報、漏洞管理、合規(guī)檢查等功能,使客戶安全運維成本降低40%。邊緣計算為智慧交通提供了實時的數(shù)據(jù)處理和決策支持。廣東ARM邊緣計算視頻分析
作為行業(yè)先行者,倍聯(lián)德構(gòu)建了覆蓋硬件、算法、系統(tǒng)的全棧解決方案:異構(gòu)計算架構(gòu):其E500系列邊緣服務器采用Intel?Xeon?D系列處理器與NVIDIA Jetson AGX Orin GPU的混合架構(gòu),支持16路4K視頻實時分析,算力密度較傳統(tǒng)方案提升3倍。在蘇州工業(yè)園區(qū)自動駕駛測試場,該設備可同時處理200路攝像頭數(shù)據(jù),目標檢測準確率達99.2%。聯(lián)邦學習框架:針對數(shù)據(jù)隱私保護需求,倍聯(lián)德開發(fā)了分布式聯(lián)邦學習平臺。在廣州智能網(wǎng)聯(lián)汽車示范區(qū),100輛測試車通過邊緣節(jié)點共享模型參數(shù),在保護原始數(shù)據(jù)的前提下,將雨霧天氣下的行人識別準確率從78%提升至92%。動態(tài)資源調(diào)度:基于強化學習的資源分配算法,可根據(jù)路況復雜度自動調(diào)整計算任務。在成都二環(huán)高架測試中,系統(tǒng)在擁堵場景下優(yōu)先啟用低延遲模式,將圖像處理幀率提升至60fps;而在高速場景下切換至高精度模式,確保0.1米級定位精度。廣東自動駕駛邊緣計算解決方案行業(yè)標準化進程加速將促進邊緣計算生態(tài)的開放互通,降低企業(yè)部署門檻。
便攜式醫(yī)療設備通過邊緣計算實現(xiàn)本地生命體征分析,在斷網(wǎng)情況下仍能持續(xù)監(jiān)測患者心率、血氧等指標。某三甲醫(yī)院的心電監(jiān)護儀采用邊緣架構(gòu)后,室顫識別延遲從15秒縮短至0.5秒,為急救爭取了黃金時間。此外,手術(shù)機器人的邊緣計算模塊可實時處理4K影像數(shù)據(jù),確保主刀醫(yī)生操作的精確性。隨著5G與AI技術(shù)的融合,邊緣計算與云計算正從“替代競爭”轉(zhuǎn)向“協(xié)同共生”。在智能電網(wǎng)場景中,邊緣節(jié)點實時監(jiān)測變壓器溫度,云端平臺分析歷史數(shù)據(jù)預測設備壽命;在智慧農(nóng)業(yè)領(lǐng)域,田間傳感器通過邊緣計算控制灌溉系統(tǒng),云端AI模型優(yōu)化種植方案。據(jù)IDC預測,到2026年,80%的企業(yè)將采用邊云協(xié)同架構(gòu),其數(shù)據(jù)處理效率較單一模式提升3倍以上。
在智能制造領(lǐng)域,其E500系列機架式邊緣服務器已部署于比亞迪、富士康等企業(yè)的智能工廠。該設備集成Intel Xeon D處理器與NVIDIA Jetson AGX Orin GPU,支持8路4K攝像頭實時分析,可精確識別0.01毫米級的機械臂運動偏差。在深圳某電子廠的測試中,系統(tǒng)將設備故障響應時間從3秒壓縮至15毫秒,使產(chǎn)線綜合效率(OEE)提升18%,年節(jié)省運維成本超2000萬元。在智能交通場景中,倍聯(lián)德與某車企合作的5G無人公交項目,通過路側(cè)邊緣計算節(jié)點實時處理1平方公里范圍內(nèi)所有車輛的數(shù)據(jù),結(jié)合TSN時間敏感網(wǎng)絡技術(shù),使緊急制動距離縮短40%,信號燈配時優(yōu)化效率提升40%。這一方案在2025年四川地震救援中發(fā)揮關(guān)鍵作用,其車載邊緣設備在斷網(wǎng)環(huán)境下持續(xù)工作72小時,通過衛(wèi)星鏈路傳輸壓縮后的手術(shù)數(shù)據(jù),成功實施3例野外截肢手術(shù)。在智能制造中,邊緣計算可實時監(jiān)測設備狀態(tài)并觸發(fā)預警,避免生產(chǎn)線停機風險。
公司自主研發(fā)的EdgeGuard安全平臺,基于零信任原則對所有訪問請求進行動態(tài)認證。通過SD-WAN技術(shù)實現(xiàn)邊緣節(jié)點與云端的加密隧道連接,采用國密SSL/TLS 1.3協(xié)議,將數(shù)據(jù)傳輸延遲控制在5ms以內(nèi)。針對DDoS攻擊,平臺集成阿里云高防IP,可自動識別并清洗惡意流量。在2024年某省級電網(wǎng)的攻防演練中,該系統(tǒng)成功防御了峰值流量達500Gbps的攻擊,保障了電力調(diào)度的實時性。倍聯(lián)德將聯(lián)邦學習技術(shù)應用于邊緣安全,其EdgeAI模塊可在本地訓練異常檢測模型,無需上傳原始數(shù)據(jù)。通過分析設備日志、網(wǎng)絡流量、系統(tǒng)調(diào)用等多維度數(shù)據(jù),模型可識別APT攻擊、數(shù)據(jù)泄露等高級威脅。在某汽車工廠的實踐中,該系統(tǒng)提前15天預警了針對焊接機器人的勒索軟件攻擊,避免生產(chǎn)線癱瘓。此外,公司開發(fā)的區(qū)塊鏈存證平臺,可對邊緣節(jié)點操作進行不可篡改的審計,滿足等保2.0三級要求。邊緣計算的安全性是行業(yè)關(guān)注的焦點之一。廣東超市邊緣計算報價
邊緣計算正在逐步改變數(shù)據(jù)處理的方式。廣東ARM邊緣計算視頻分析
倍聯(lián)德為富士康打造的“5G+邊緣計算”智能工廠,實現(xiàn)三大突破:實時控制:邊緣節(jié)點直接控制機械臂運動,將運動指令響應時間從200毫秒壓縮至20毫秒;柔性生產(chǎn):通過邊緣計算分析訂單數(shù)據(jù),動態(tài)調(diào)整產(chǎn)線配置,支持小批量、多品種的快速切換;預測性維護:結(jié)合設備振動、溫度等數(shù)據(jù),提前72小時預警故障,使產(chǎn)線綜合效率(OEE)提升18%。在深圳某智慧交通項目中,倍聯(lián)德部署的5G邊緣計算節(jié)點實時處理路口攝像頭數(shù)據(jù),結(jié)合AI算法優(yōu)化信號燈配時,使高峰時段擁堵指數(shù)下降30%。同時,邊緣節(jié)點通過5G網(wǎng)絡與云端協(xié)同,實現(xiàn)跨區(qū)域交通流量預測,為城市規(guī)劃提供數(shù)據(jù)支撐。廣東ARM邊緣計算視頻分析